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Donald R. Lesuer*, Chol K. Syn* and Oleg D. Sherby**

* Lawrence Livermore National Laboratory, Livermore, CA 94551
** Stanford University, Stanford, CA 94305

Abstract

Extensive plastic deformation during wire drawing is commonly used to produce steel wires with
very high strengths.  Typically these steels are eutectoid and hypereutectoid steels and drawing
strains up to 4 are used during processing.  The resulting materials can have tensile strengths in
excess of 4000 MPa.  The evolution of microstructure and the strengthening mechanisms
resulting from wire drawing have been studied for eutectoid and hypereutectoid steels.  Strength
has been shown to be a function of pearlite colony size, interlamellar spacing and the size of the
stable dislocation cells that are produced during wire drawing.  The results have been used to
model the evolution of strength during wire drawing.  Model predictions for the evolution of
tensile strength with drawing strain show excellent agreement with data derived from a number
of eutectoid and hyperectectoid steels as a function of drawing strain.



Introduction

Wire drawing is commonly used to produce steel wires with high strengths.  Typically these
steels are eutectoid and hypereutectoid steels and drawing strains up to 4 are used during
processing.  Several investigators have studied the evolution of microstructure during drawing of
mildly hypereutectoid steels [1-3] and iron [3,4].  The starting microstructure for wire drawing
of eutectoid and hypereutectoid steels is fine pearlite with randomly oriented lamellae.  The fine
pearlite results from a patenting heat treatment.  The mean free ferrite path in a eutectoid steel
after patenting is typically 90 nm.  Increasing the carbon content will decrease the mean free
ferrite path. The resulting properties have also been previously described [5,6].  This paper is
primarily concerned with strengthening mechanisms in severely drawn, pearlitic steel wire.
These strengthening mechanisms are introduced into a model that describes the evolution of
strength during wire drawing.  The model predictions for the evolution of tensile strength
strength with drawing strain are then compared with data derived from a number of eutectoid and
hyperectectoid steels as a function of drawing strain.

Microstructural Evolution During Wire Drawing

The microstructural evolution of a eutectoid composition steel during wire drawing is shown
schematically in Fig. 1.  Drawing produces considerable alignment of the pearlite plates parallel
to the drawing direction and reduction in the mean free ferrite path.  The ferrite also develops a
<110> wire texture typical for BCC metals.  Throughout the wire drawing process, the carbide
plates deform to strains comparable to the ferrite plates and the carbide plates are also observed to
fracture but not as much as might be expected.  Recent work has also shown that partial
dissolution of the cementite phase can occur during severe plastic deformation of pearlitic steels
[7].  Dense dislocation tangles form in the ferrite and, at small drawing strains (approximately
.25), dislocation cell walls form.  These cell walls contain fragmented carbide particles.
Transmission electron microscopy studies reveal that very few dislocations are found within the
cells and a high dislocation density is found in the cell walls.  With continuing deformation, these
cells become thinner and resist extensive dynamic recovery.  Embury et al. [2] have shown that
the width of the cells scales as the diameter of the wire.  The result is the development of a fine,
stable substructure with very fine cell dimensions normal to the wire axis (e.g. < 10 nm).

magnification 1x magnification 1.4x magnification 2.7x

Fig. 1.  Schematic drawing showing the development of microstructure during drawing of eutectoid
composition steel.  Typical drawing strains are indicated in the figure.



Properties and Strengthening Mechanisms

The dominant deformation resistance in UHCS wire depends on the structure and substructure
developed during processing.  Previous studies of eutectoid and hypereutectoid steels [8, 9] with
pearlitic microstructures have shown that, in the absence of severe plastic deformation, the yield
strength is derived from hardening contributions associated with pearlite colony size,
interlamellar carbide spacing and solute additions.  The pearlite colony size and the interlamellar
carbide spacing represent the dimensions of microstructural features that impose barriers to
dislocation motion.  These strengthening mechanisms contribute to the yield strength in an
additive manner and, for eutectoid and hypereutectoid steel with pearlitic microstructure, the
following equation has been derived.

σy = (σo)ss + 145(D)-1/2+ 460L-1/2 (1)

where σy is the yield strength, (σo)ss is the resistance to dislocation motion resulting from solid
solution atoms, (D)-1/2  is the carbide spacing (interlamellar spacing) and L is the pearlite colony
size.  

After severe plastic deformation, additional strengthening mechanism(s) are introduced.  A
number of investigators have studied the increase in strength that results from cold drawing of
eutectoid and hypereutectoid steel wires [1, 5, 10-13].  Most of these studies have reported
strength as a function of wire diameter.  Data from seven such materials are shown in Fig. 2.
Five of these materials are hypereutectoid composition wires and two of the materials are
eutectoid composition wire (piano wire and the data of Kim). The starting strength in all these
studies is derived from a fully pearlitic microstructure produced as a result of a patenting
treatment.  The strengthening produced by patenting to obtain these microstructures represents an
important starting point for the very high strengths typically observed in severely drawn wire.
The influence of cold wire drawing on the strength of hypereutectoid steels can be understood
through further analysis of the data in Fig. 2.  The increase in strength resulting from cold wire
drawing was calculated as a function of drawing strain by subtracting the strength in the patented
condition from the strength of the wire in the cold-drawn condition.  Results are shown in Fig. 3
for three hypereutectoid steels with similar compositions.  These materials had different as-
patented strengths and different starting diameters.  The results fall on a common curve
suggesting that a common mechanism is responsible for the increase in strength by wire
drawing.  It is also important to recognize that, even after a drawing strain of 4, the strength of
the wire is continuing to increase with increasing strain.  These high work hardening rates at high
strains are in contrast to the work hardening rates in FCC metals [2], which are substantially
lower.  The reduced work hardening rates in FCC metals at large strains result from more
extensive dynamic recovery and thus a slower rate of reduction in the size of dislocation
substructures relative to iron.   
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     -0.3Mn-0.21Cr Fig. 2.  Tensile strength as a
function of wire diameter during
wire drawing for eutectoid and
hypereutectoid steels.
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Fig. 3.  Strength increment as a
function of wire drawing strain in
hypereutectoid steels with similar
composition.

Embury and Fisher[1] have studied the principal strengthening mechanisms resulting from cold
wire drawing in a Fe-.93C-.2Si-.37Mn wire. As discussed above, wire drawing develops a
stable, cellular substructure consisting of narrow, oriented dislocation cells, which are the
dominant source of strengthening in these materials.  In Fig. 4, the variation of stress with cell
size (measured normal to the drawing axis) is shown.  The wire drawing produced very small
cell sizes (10 nm and less).  The yield strength of the wire was found to vary as the inverse
square root of the width (λ) of the cells.   Thus, in general terms,

σy = σo + kyλ
-n (2)

where σy is the yield strength, σo is the strength from all sources other than dislocation cells, and
ky and n are constants.  The strengthening in these severely drawn wires with stable
substructures resulted from the cell walls acting as barriers to dislocation motion.
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The contribution of a stable cellular structure to strengthening has also been studied by Langford
and Cohen [4] for pure iron.  In contrast to the work of Embury and Fisher, the yield strength
was found to vary as an inverse linear function of the dislocation cell size (d-1).  The dependence
of flow stress on d-1 was theorized to result from the work of deformation required to generate
the length of dislocation line necessary to produce the imposed deformation.  A comparison of
the Embury and Fisher data on a Fe-.93C steel (which showed d-1/2) and the Langford and Cohen
data on pure iron (which showed that strength varied as d-1) is shown in Fig. 4.  Clearly different
slopes are appropriate for the two data sets, although there is an overall continuity in the data for
the two investigations.  It is important to note, however, that, in addition to the Fe-.93C alloy,
Embury and Fisher also studied a commercially pure iron (Ferrovac E) and concluded that the
yield strength varied also as d-1/2.  Despite these differences, the results in Fig. 4 suggest a
change in the dominant deformation resistance or significant contributions from other
deformation mechanisms upon decreasing the cell size.  Over the range of cell sizes studied, the
strength varies as d-n with n between .5 and 1.  A more fundamental model for describing the
relationship between strength and cell size will be presented in the next section.

Two observations relative to the strength levels shown in Fig. 4 are relevant to the various
mechanisms of strengthening.  First, the initial (as patented) strength before wire drawing is
higher in the hypereutectoid steel than in pure iron.  Clearly this difference arises from the
strengthening effects of the carbide plates in the pearlitic steel.  By analogy with the experimental
work of Taleff et al. [8, 9], one might expect that the strength of a pearlitic steel results from the
sum of strengthening contributions from different barriers to dislocation motion.  Thus for a
severely worked pearlitic steel,

σy = (σo)ss + σpearlite + σcolony + σcell (3)

where (σo)ss , σpearlite, σcolony and σcell represent the resistance to dislocation motion resulting from

solid solution additions ((σo)ss), pearlitic plate spacing (σpearlite), pearlite colony size (σcolony) and

dislocation cell size (σcell).  The (σo)ss, σpearlite, σcolony terms for hypereutectoid steels are given in

Equation (1).  The σcell term is the dominant source of strengthening in Fig. 2 (assuming in a
severely drawn wire that the yield strength equals the tensile strength).  The data in Fig. 2
suggests that for severely drawn wire the cell size dominates the strength of the wire, and the
pearlite spacing and pearlite colony size are secondary contributors.  Furthermore, this view
agrees with the continuous nature of the data shown in Fig. 4, which compares a pearlitic
structure wire with a totally ferritic structure wire.  The σcell data in Fig. 4 is for a single



composition hypereutectoid steel.  It is informative to examine the strength increment due to
drawing for all the steels shown in Fig. 2.  The results are shown in Fig. 5, which shows a good
correlation between the incremental increase in strength and the drawing strain.  There is some
scatter in the data; the general trend, however, is that steels with higher carbon content have
higher strength increments for a given amount of drawing strain.
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Fig. 5.  Strength increment as a
function of wire drawing strain
for the eutectoid and
hypereutectoid steels shown in
Fig. 3.  

The second observation that can influence the strength levels in Figs. 2, 3, 4 and 5 is the size of
the initial cells that form.  As noted by Embury and Fisher, who compared dislocation
substructures produced in commercially pure iron and Fe-.93C (with both coarse and fine
pearlite), the presence of carbide plates produced a smaller initial cell size in the ferrite.  In
addition, reducing the interlamellar spacing through suitable heat treatment reduced the initial cell
size.  Thus, by analogy, increasing the carbon content for a given carbide-to-carbide distance in
pearlite will reduce the mean free ferrite path and thus the initial cell size.  Since the cell thickness
scales with wire diameter during drawing [1], smaller cell sizes (and higher strengths) are
possible for a given drawing strain.  These conclusions are consistent with experimental
observations by Ochiai [10, 14] on eutectoid and hypereutectoid steel wires in that both the as-
patented strength and the work hardening rate increased with increasing carbon content.  

Modeling of Strength Evolution

The model for strength evolution of a pearlitic, eutectoid-composition steel during wire drawing
is derived from Equation (3), which assumes that individual strengthening mechanisms do not
influence one another and contribute to the overall strength in an additive manner.  Combining
Equations (1) and (3) results in Equation (4)

σy = (σo)ss + 145(D)-1/2+ 460L-1/2+ σcell (4)

In addition, we assume that during wire drawing the evolution (increase) in strength produced by
these various mechanisms results from a decrease in the barrier spacing.  As suggested by



Embury and Fisher for the interlamellar spacing in pearlite, the evolution of microstructural
features controlling the dislocation barrier spacing scales with the initial wire diameter.  Thus
during the wire drawing process, the microstructures exhibit similitude and

do/d = Do/D = Lo/L = λo/λ (5)

where do is the initial wire diameter, d is the current wire diameter, Do is the initial carbide
spacing, Lo is the initial pearlite colony size and λo is the initial cell size developed early in the

drawing process.  Since the drawing strain (ε) is equal to

ε = 2 ln(do/d), (6)

the evolution of the various dislocation barrier spacings with drawing strain can be obtained from

do/d = exp(ε/2). (7)

Using this analysis it is possible to predict the cell size as a function of drawing strain.  The
results are shown in Fig. 6 assuming a stable cell size of 60 nm develops after a strain of 0.8.
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The strengthening contribution of the cellular substructure can be derived from the stress
necessary to activate a dislocation source.  The problem is shown conceptually in Fig. 7, which
shows a dislocation bowing out between the cell walls.  Activation of this dislocation source
requires bowing the dislocation to a semi-circular shape.  Sevillano [15] and Languillaume et al.
[16] have provide an expression for this stress, namely

σcell = (MAGb/2πλ) ln(λ/b) (8)

where M is an orientation factor (assumed as 1.84 for the <110> wire texture), A is a constant
(equal to 1.2 for a mixed dislocation), G is the shear modulus (6.4·104 MN/m2) and b (2.48·10-

10m) is the Burgers vector.  
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Fig. 7.  Activation of a dislocation source within
the cell of a severely drawn wire.

Calculations of wire strength as a function of drawing strain were made using the model
described above.  Values of Do and Lo (.09 µm and 3.6 µm respectively), which were taken from
the work of Taleff et al. [8, 9], are representative of hypereutectoid steels with fine pearlite.  The
results are shown in Fig. 8 for two different values of (σo)ss – 20 MPa and 330 MPa.  The value

of (σo)ss increases with alloy content and the values used in the calculations represent the range in

(σo)ss that has been observed for low and high alloyed hypereutectoid steels.  The figure shows
how the strengthening contribution of the four mechanisms evolves with drawing strain.  Also
shown in the figure are the tensile strength data (plotted as a function of drawing) for the drawn
eutectoid and hypereutectoid steels presented in Fig. 2.  The model calculations show excellent
agreement with the experimental data.  The results show that for typical drawing strains (e.g. >
2) the strength of the drawn wire is dominated by the strengthening contributions of the cell
structure.  In addition, with increasing strain, the hardening rate of the cell strengthening
mechanism increases the most.  However, despite the importance of the cell structure, the
lamellar pearlite plates are still important contributors to strength - e.g. contributing
approximately 32% of the strength at a drawing strain of 4.  On the other hand, substitutional
solute additions contribute very little to the strength of the drawn wire.
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Summary and Concluding Remarks

This paper has reviewed the microstructure evolution and the resulting strength of hypereutectoid
steels during wire drawing.  Mechanisms of strengthening that result from severe wire drawing
have been discussed.  A model has been developed to describe the evolution of strength during
wire drawing.  The model predictions for the evolution of tensile strength with drawing strain
have been compared with data derived from a number of eutectoid and hyperectectoid.  The
model shows excellent agreement with experimental data.  Important conclusions are as follows.

• Severe plastic deformation during wire drawing of hypereutectoid steels results in
considerable alignment of the pearlite plates and the development of a dislocation substructure
within the ferrite that resists dynamic recovery.  Deformation and fracture of the carbide plates
is also observed.
• The yield strength in hypereutectoid steels has been shown to result from additive
strengthening contributions from solid solution additions, pearlite spacing, pearlite colony size
and dislocation cell size.  For severely drawn wire, the strengthening due to dislocation cells
can dominate the strength of the wire.  However, the lamellar pearlite plates are still important
contributors to strength but substitutional solute additions contribute little strength.
• Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and
the initial cell size developed during drawing.  This results in a higher flow stress in the as-
patented wire and a higher work hardening rate.
• Achieving high strength requires a) eliminating the continuous carbide network that can
form during cooling from temperatures in the austenite phase field, b) a starting microstructure
of fine pearlite, c) alignment of pearlite plates and development of a stable dislocation
substructure within the ferrite and d) avoiding fracture.
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